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Slaize [ K6 Sl

oy = [d ) (x'la), (1.6.9)

where x’ stands for x’, y’, and z’; in other words, |x’) 1s a simultaneous
eigenket of the observables x, y, and z in the sense of Section 1.4:

XY =|x,y’,2'), (1.6.10a)
XX’y = x'x"), yixy = y’Ix’), zx’) =z’|x"). (1.6.10b)
To be able to consider such a simultaneous eigenket at all, we are implicitly

assuming that the three components of the position vector can be measured
simultaneously to arbitrary degrees of accuracy; hence, we must have

[x;.x;]=0, (1.6.11)

where x;, x,, and x, stand for x, y, and z, respectively.



infinitesimal translation by dx’: 7 (dx’)|x’)=Kx’+dx’), (1.6.12)

la) = T (dx’)|a) =T (dx’) Id3x’|x’>(x’|a) = ld XX+ dx"y{x'la). (1.6.13)
Jd2xw +dxy(xay = [dPx Wy (x’—dxlay  (1.6.14)

We now list the properties of the infinitesimal translation operator

be unitary: 7(4x") 7 (dx’)=1. (1.6.16)
T(dx”)T (dx’) =T (dx’+dx"”). (1.6.17)

T(—dx’) =T Ndx"). (1.6.18)
lim 7 (dx’) =1 (1.6.19)
dx’— 0

We now demonstrate that if we take the infinitesimal translation

operator tobe [ g 4oy _1_iK.dx’, (1.6.20)
where the components of K, K _, K ,» and K_, are Hermitian operators, then
all the properties listed are satisfied. 5



[x, 7 (dx")] = dx’, (1.6.25)
|x,, K| =i, (1.6.27)

J. Schwinger, lecturing on quantum mechanics, once remarked, “...
for fundamental properties we will borrow only names from classical
physics.” In the present case we would like to borrow from classical

mechanics the notion that momentum 1s the generator of an infinitesimal
translation.

_ p
K universal constant with the dimension of action (1'6'30)

The universal constant that appears in (1.6.30) turns out to be the

same as the constant A that appears in L. de Broglie’s relation, written in

1924, 27 p
-2 (1.6.31)

T (dx’)=1—ip-dx'/h, (1.6.32)
[x,, p,]=ihs,,. (1.6.33)
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(Blay = [dx’(BIx")(x"|ac)

=fdx’¢g(x’)\,ba(x’), (1.7.6)

so (Bla) characterizes the joverlap between the two wave functions| Note
that we are not defining { 8|a) as the overlap integral; the identification of
(B|a) with the overlap integral follows from our completeness postulate for

|x”). The more general interpretation of (Bla), independent of representa-
tions, 1s that it represents the|probability amplitude for state |a) to be found

in state |f3).
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L, 0 ,
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pip=p1pP") 1o =fdp’lp’><p’|a>
momentum-space wave function (play=¢.p)

Jdp'(alp'y(pla) = [dp’19a( p") 17 =1

Let us now establish the connection between the x-representation
and the p-representation. We recall that in the case of the discrete spectra,
the change of basis from the old set {|a’)} to the new set {|b")} is
characterized by the transformation matrix (1.5.7). Likewise, we expect that
the desired information is contained in (x’| p”), which is a function of x’
and p’, usually called the transformation function from the x-representation
to the p-representation. To derive the explicit form of (x’|p”), first recall
(1.7.17); letting |a) be the momentum eigenket | p”), we obtain

(1.7.27)

’ ’ - a
(XNplp7)=—ih=>
X

ot (1.7.28)
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d
ax’

The solution to this differential equation for {x’|p”) is

p(x’|p’) =—ih— (x'|p’)

, , l fxf
(x |p>=NEXP( ph ;

(xx7y = [dp’ (xpy(p1x").
a(xr___xu — Ilefdp’exp{ip’(x’h‘x”)]

=27h|N|*8(x’— x").

o 1 (fp’x’)
X = ex
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. 1 (ip’x’)
X = ex
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1 "I
’Yy — d!
balx) = | == | [ exp|

i ’x’)%(p’)

(p'la) = f dx’( p'lx"y(x'|e)

o 0) = | 5 | [ ex —H ()




(20

o3> GUiS ) Ojgo 4 (o9l Zge dlan So 4 bgrpe (X) e sUaS 1> zge

i :‘)9‘35‘
(X e ! qexp ikx’ x '
x'|lay = _
7t/4d 24
28 alasms ) Py P XD X gl e ilais ke — A
<(A_)C)2><(Ap)2> 1@@)){‘)@?”&@‘)_?

,_3%)91 Cawd & 1 (p) &&3 slad C9° 6213 u L’%ﬁ & 4, -

17



SETR g 142‘9)

(BIplay = [d*xY3(x)(— ihe )y ,(x")

r .
. 1 ipex’
(x'|p') = exp —-——ph

l 'v'e v’
Va(x') = fd3p’eXP = | 9a(p)

’ 1 ’ — 1 "x’ ’
o (P') = ) fd3x exp| —p—— | ¥a(X’)

It is interesting to check the dimension of the wave functions. In
one-dimensional problems the normalization requirement (1.6.8) implies
that |(x’|a)|? has the dimension of inverse length, so the wave function
itself must have the dimension of (length) /2. In contrast, the wave
function in three-dimensional problems must have the dimension of

(length) ~3/2 because |(x’|a)|’ integrated over all spatial volume must be
unity (dimensionless).
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TIME EVOLUTION AND THE SCHRODINGER EQUATION

time evolution

|, 1) = |a) - la, 245 2).
time-evolution operator %(z,1,):
la, 23 1) =U(t,15)|a, 15).

o, 1) =D ¢ (t5)]a’).

at some later time, |a, 1,; ) = )_c,(t)|a’).

d

lc, (1) # e, (20)]
Z;|caf(ro)|2 =2 lc. (1)




fundamental properties of the % operator

<aa tolaa t0> =1= <a, IO? Ila, tO; t) =1
(1, 1,)%(1,1,) =1
U(ty,ty)=U(1,,1)U(11, 1), (t,>1,>1,)

lim %(¢t,+dr,t,) =1
lim (1, +di, 1)

be unitary: 71(4x’) 7 (dx’) =1.
T (dx”) T (dx’) =T (dx’+dx").
T(—dx’)=T (dx’).

lim 7 (dx’)=1
dx’— 0

23



all these requirements are satisfied by
U(ty+dt,1,)=1—iQdt (2.1.15)
where  is a Hermitian operator,* Qf=Q

U(ty+dt,+dty,ty)=U(ty+dty+dty, tyg+dt)U(ty+dty, 1)
Uty +de,tg)U(ty+dt,ty)=(1+i2dr)(1-iQdt) =1

T(dx’)=1—iK-dx’,

24



The operator €2 has the dimension of frequency or inverse time. Is
there any familiar observable with the dimension of frequency? We recall
that in the old quantum theory, angular frequency w is postulated to be
related to energy by the Planck-Einstein relation

E=ho. (2.1.19)

Let us now borrow from classical mechanics the idea that the Hamiltonian
1s the generator of time evolution (Goldstein 1980, 407-8). It is then natural
to relate 2 to the Hamiltonian operator H:

Q= % (2.1.20)

iH dt
U(t,+dt,t,) =1 7 (2.1.21)

25
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The Schrodinger Equation

U(t+di,ty)— U(1,1,) = — :(%) dr(1,1,),  (2.1.24)
Schrédinger equation for the time-evolution operator
z'h%f?/(t,tg)=H°?/(r,t{-}). (2.1.25)
—> fh%é?z(t, to)la, 1) =HU(1,t,)|a,t,).
Schrodinger equation for the state ket

mgt-m, to;t)=Hla,ty;1), (2.1.27)

27



If we are given %(t, t,) and, in addition, know how %(t,¢,) acts on
the initial state ket |a, #,), it 1s not necessary to bother with the Schrodinger
equation for the state ket (2.1.27). All we have to do is apply %(¢,1¢,) to
la, 7,); in this manner we can obtain a state ket at any ¢.

. d
Zhat%

(£,20) = H%(tato)

Case 1. The Hamiltonian operator 1s independent of time.

— iH(i; ~ o) ] (2.1.28)

U(t,t,) =expl

To prove this let us expand the exponential as follows:

exp[ -iH(;—to)]=l_ iH(th— t) +[(_2,.)z [H(th—to) r+

(2.1.29)

Because the time derivative of this expansion is given by

;texp[hiH(};_IO)]——* +[(_2l) ] (h)(t—to)+

lim [1—(’H/h¥t_t0)] -exp[ iH(;_ZO)}. (2.131)

(2. 1 30)

N — o0




Case 2. The Hamiltonian operator H is time-dependent but the
H’s at different times commute.

(t,t,) =exp[—(%)f’dfﬂ(r')}. (2.1.32)

Case 3. The H'’s at different times do not commute.

s —i\" 1t 4 lp—1
U(t, t,)=1+ ) (—-—h——) fdtlf dtz---f dt, H(t))H(t,)--- H(t,),
n=l oo D o (2.1.33)

which i1s sometimes known as the Dyson series, after F. J. Dyson, who
developed a perturbation expansion of this form in quantum field theory.

29




Energy Eigenkets

To be able to evaluate the effect of the time-evolution operator
(2.1.28) on a general initial ket |a), we must first know how it acts on the
base kets used in expanding |a). This is particularly straightforward if the
base kets used are eigenkets of A such that

[4,H]=0; (2.1.34)

then the eigenkets of 4 are also eigenkets of H, called energy eigenkets,
whose eigenvalues are denoted by E .

Hla’y=E_ |a’). (2.1.35)

We can now expand the time-evolution operator in terms of |a’){a’|.
Taking ¢, = 0 for simplicity, we obtain

_th 77 77 _th p p ""iEart
)=ZZ|0 ){a Iexp( p )|a )(aI=Z|a’)exp( - )(a’|.

(2.1.36)

exp(

—iHl‘)

exp( ) = L la’Yexp( —5 < [Gat



As an example,

) = |, 1, =0) = Z|a><a|a> Zc la’)

la, 1) =|a,t,=0;¢) =exp( _IHI)IOO Z|a N(a’ |a)exp( _lf"’t).

E 1
—> ca,(t=0)-—>ca,(t)=ca,(t=0)exp( lh“ )

’ p - iEaft
@) =la’y —> la,1)=laexp| —52 ),
so if the system is initially a simultaneous eigenstate of 4 and H, it remains
so at all times. The most that can happen 1s the phase modulation,
exp(—iE t/h). It 1s 1n this sense that an observable compatible with H
[see (2.1.34)] is a constant of the motion.



In the foregoing discussion the basic task in quantum dynamics is
reduced to finding an observable that commutes with H and evaluating its
eigenvalues. Once that is done, we expand the initial ket in terms of the
eigenkets of that observable and just apply the time-evolution operator. This
last step merely amounts to changing the phase of each expansion coeffi-
cient, as indicated by (2.1.39).

Even though we worked out the case where there is just one observ-
able A that commutes with H, our considerations can easily be generalized

when there are several mutually compatible observables all also commuting
with H:

[4,B]=[B,C]=[A4,C]="--- =0,
[4,H]=[B,H]=[C,H]=---=0. (2.1.42)
Using the collective index notation of Section 1.4 [see (1.4.37)], we have
— i —iE it
exp( ;_!Ht) =Y |K’>exp( IhK )(K’|, (2.1.43)
K’

where E,. is uniquely specified once a’, b’, c’, ... are specified. It is there-
fore of fundamental importance to find a complete set of mutually compatible
observables that also commute with H. Once such a set is found, we express
the initial ket as a superposition of the simultaneous eigenkets of 4, B,C, ...
and H. The final step is just to apply the time-evolution operator, written as
(2.1.43). In this manner we can solve the most general initial-value problem
with a time-independent H.
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[x, 7 (dx’)] = dx’, (1.6.25)
|xi, K| =i, (1.6.27)

J. Schwinger, lecturing on quantum mechanics, once remarked, “...
for fundamental properties we will borrow only names from classical
physics.” In the present case we would like to borrow from classical
mechanics the notion that momentum 1s the generator of an infinitesimal
translation. An infinitesimal translation in classical mechanics can be re-
garded as a canonical transformation,

X oo =X=X+dX, Pp..=P=p, (1.6.28)
obtainable from the generating function|(Goldstein 1980, 395 and 411)
F(x,P) =x-P+p-dx, (1.6.29)

(1.6.29) is the generating function for the identity transformation (X = x, P
= p). We are therefore led to speculate that the operator K is in some sense

related to the momentum operator in quantum mechanics.
34



